Скрытые марковские модели

Цепь Маркова

Определение: Цепь Маркова

Набор состояний
$$Q = \{ I, ..., K \}$$

Вероятности переходов a_{st} между любыми двумя состояниями s и t

$$a_{st} = P(x_i = t \mid x_{i-1} = s)$$

 $a_{i1} + ... + a_{iK} = I$, для всех состояний $i = I...K$

Основное свойство: Вероятность текущего состояния x_i зависит только от предыдущего состояния x_{i-1} :

$$P(x_i|x_{i-1},...,x_1) = P(x_i|x_{i-1})$$

Вероятность последовательности х:

$$P(x) = P(x_L, x_{L-1}, ..., x_1) = P(x_L \mid x_{L-1}, ..., x_1) P(x_{L-1} \mid x_{L-2}, ..., x_1) ... P(x_1)$$

используя формулу условной вероятности $P(X,Y) = P(X \mid Y)P(Y)$

$$P(x) = P(x_L \mid x_{L-1})P(x_{L-1} \mid x_{L-2})...P(x_2 \mid x_1)P(x_1) = P(x_1) \prod_{i=2}^{L} a_{x_{i-1}x_i}$$

Скрытые марковские модели. Пример: обман в казино

•Обычная кость:

$$P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6$$

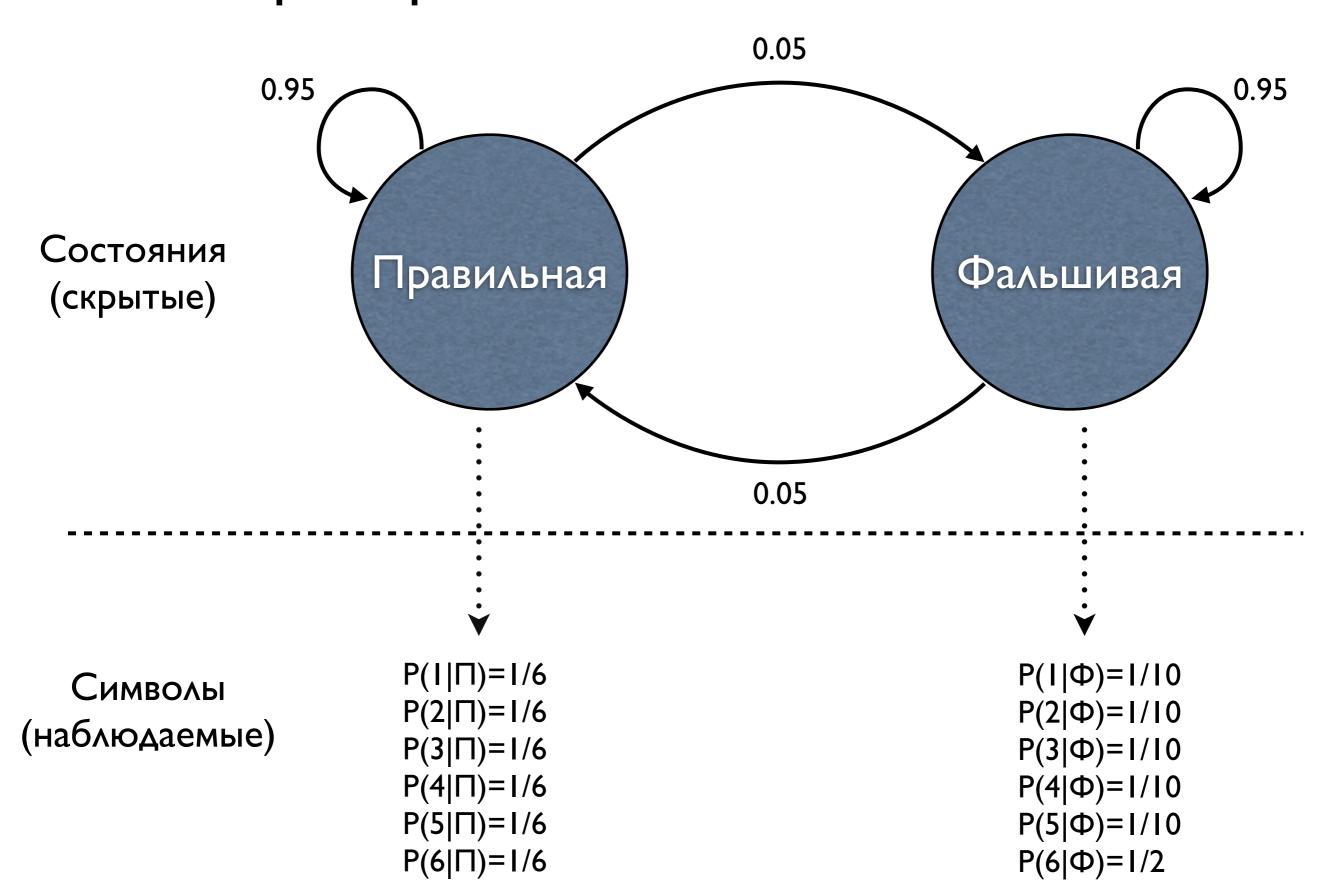
•Фальшивая кость:

$$P(1)=P(2)=P(3)=P(4)=P(5)=1/10$$

 $P(6)=1/2$

•Крупье подменяет кость примерно каждые 20 бросков

Пример: обман в казино. Модель.



Скрытая марковская модель (Hidden Markov Model, HMM)

Определение: Скрытая марковская модель

Набор состояний $Q = \{1, ..., K\}$

Вероятности переходов a_{st} между любыми двумя состояниями s и t

$$a_{st} = P(x_i=t \mid x_{i-1}=s)$$

 $a_{i1} + ... + a_{iK} = 1$, for all states $i = 1...K$

Начальные вероятности аоі

$$a_{01} + ... + a_{0K} = 1$$

Набор наблюдаемых символов = $\{b_1, b_2, ..., b_M\}$

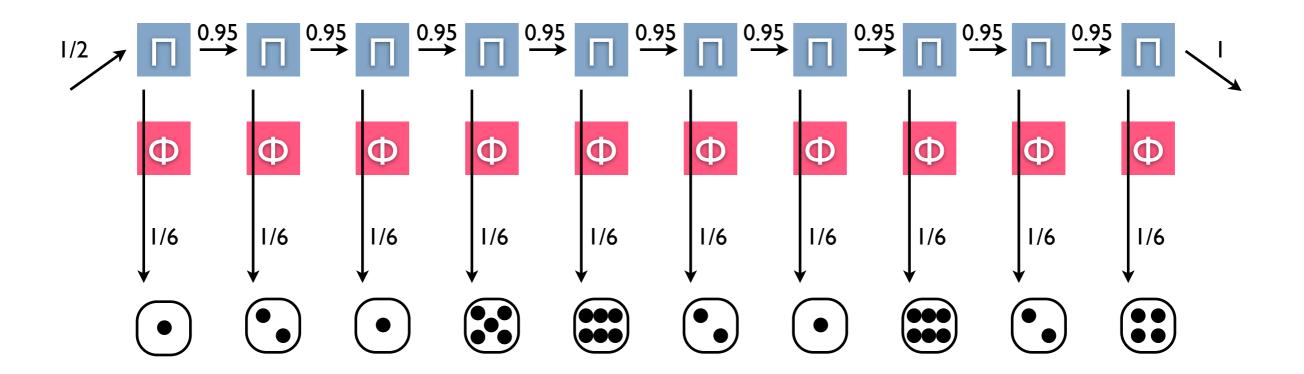
Матрица эмиссионных вероятностей $E = \{e_k(b)\}$

$$e_k(b) = P(x_i=b \mid a_i=s)$$

Совместная вероятность последовательностей символов х и состояний п:

$$P(x,\pi) = a_{0\pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

Вероятность последовательностей наблюдений и состояний



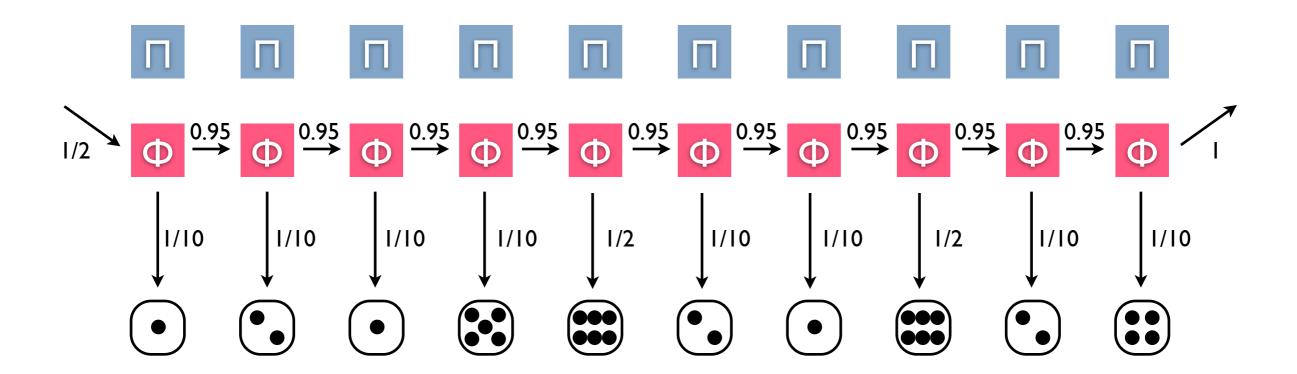
Какова совместная вероятность последовательности состояний

π = Правильная, Правильна

$$x = 1,2,1,5,6,2,1,6,2,4$$

 $P(x,\pi) = 1/2 \times P(1|\Pi paвильная) \times P(\Pi paвильная_2|\Pi paвильная_1) \times P(2|\Pi paвильная) \times P(\Pi paвильная_3|\Pi paвильная_2) \times ... \times P(4|\Pi paвильная) = 1/2 \times (1/6)^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$

Вероятность последовательностей наблюдений и состояний

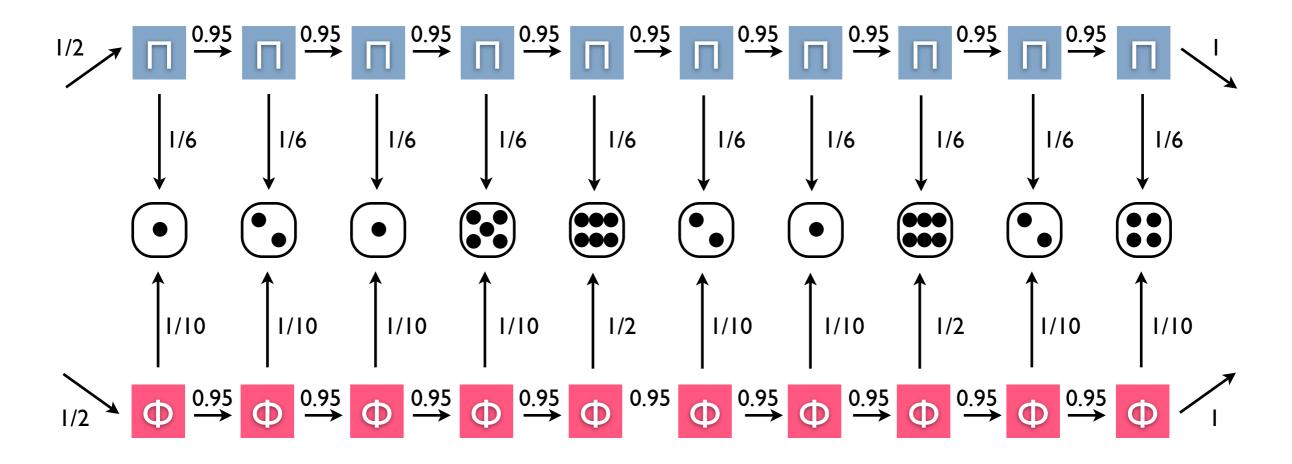


Какова совместная вероятность последовательности состояний

$$x = 1,2,1,5,6,2,1,6,2,4$$

 $P(x,\pi) = 1/2 \times P(1|\Phi_{a}$ льшивая) $\times P(\Phi_{a}$ льшивая₂| Φ_{a} льшивая₁) $\times P(2|\Phi_{a}$ льшивая) $\times P(\Phi_{a}$ льшивая₃| Φ_{a} льшивая₂) $\times ... \times P(4|\Phi_{a}$ льшивая) = $1/2 \times (1/10)^8 \times (1/2)^2 \times (0.95)^9 = 7.9 \times 10^{-10}$

Сравнение двух моделей



Две последовательности состояний:

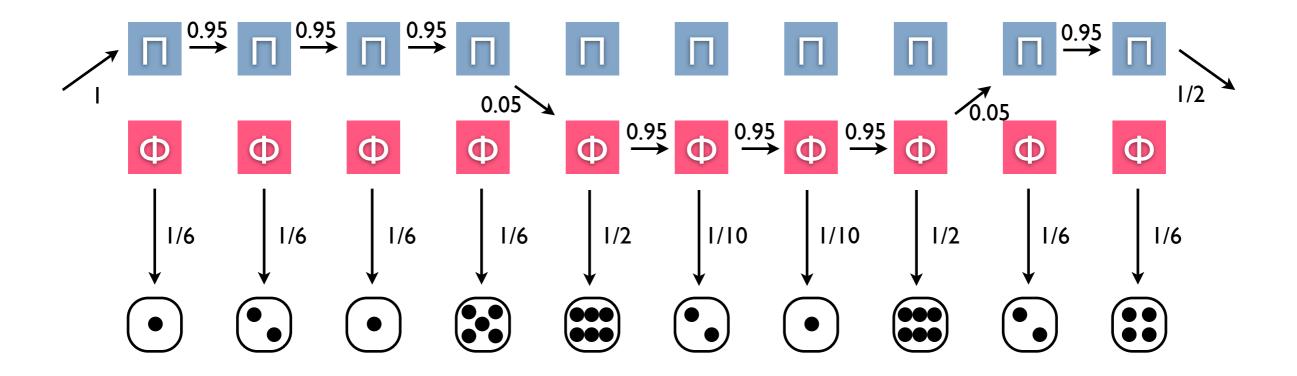
$$P(x, BCe-\Pi) = 0.5 \times 10^{-9}$$

$$P(x, BCe-\Phi) = 7.9 \times 10^{-10}$$

Отношение правдоподобия:

 $P(x, все-\Pi)$ в 6.59 раз вероятнее, чем $P(x, все-\Phi)$

Вероятность последовательностей наблюдений и состояний для случая подмены кости



Какова совместная вероятность последовательности состояний

π = Правильная, Правильная, Правильная, Правильная, Фальшивая, Фальшивая, Фальшивая, Фальшивая, Фальшивая, Правильная и последовательности символов

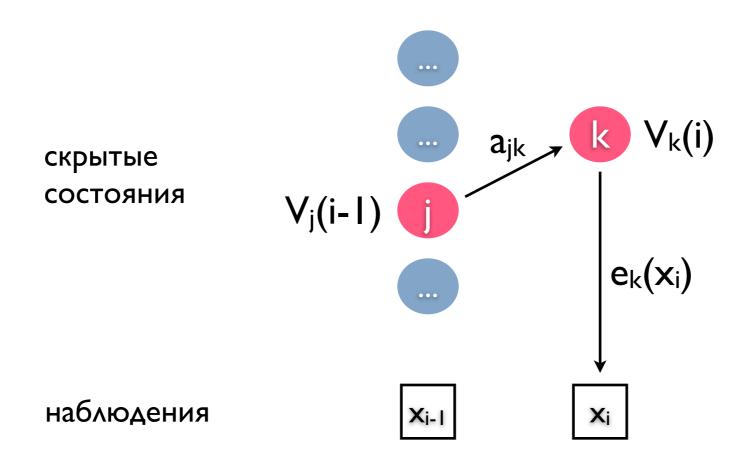
$$x = 1,2,1,5,6,2,1,6,2,4$$

 $P(x,\pi) = 1/2 \times P(1| \Pi paвильная) \times P(\Pi paвильная _2| \Pi paвильная _1) \times P(2| \Pi paвильная) \times P(\Pi paвильная _3| \Pi paвильная _2) \times ... \times P(4| \Pi paвильная) = 1/2 \times (1/2)^2 \times (1/10)^2 \times (1/6)^6 \times (0.95)^7 \times (0.05)^2 = 1.87 \times 10^{-9}$

Поиск оптимального пути

- Имея последовательность символов (наблюдений), мы умеем вычислять вероятность любого пути последовательности скрытых состояний
- Как найти оптимальный наиболее вероятный путь?
- Оптимальный путь можно определить рекурсивно (алгоритм динамического программирования Витерби):
 - пусть $V_k(i-1)$ вероятность оптимального пути, проходящего через состояние k в момент времени i-1
 - мы можем вычислить вероятности для состояний в момент времени і, как функцию $\max_k\{V_k(i)\}$

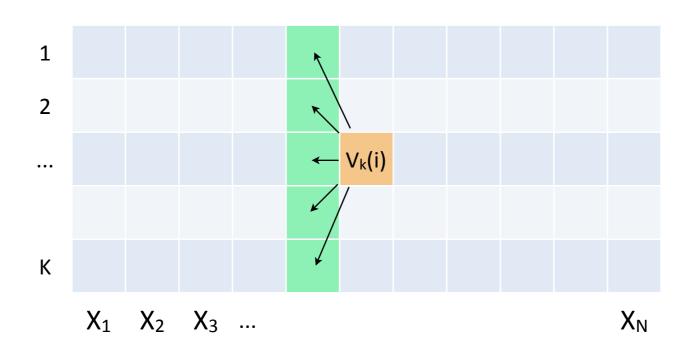
Рекурсивное вычисление оптимального пути



- Пусть мы знаем V_j для всех состояний момента времени i- I
- Тогда,

$$V_k(i) = e_k(x_i) \times \max_j (V_j(i-1) \times a_{jk})$$

Алгоритм Витерби



Входные аргументы: $x = x_1...x_N$

Инициализация:

$$V_0(0) = I, V_k(0) = 0,$$
 для всех $k>0$

<u>Рекурсия</u>:

$$V_k(i) = e_k(x_i) \times max_j (a_{jk} \cdot V_k(i-1))$$

Завершение:

$$P(x,\pi^*) = \max_j V_j(N)$$

Процедура обратного прохода:

Оптимальный путь находим проходя по ссылкам в обратном направлении (аналогично алгоримам выравнивания)

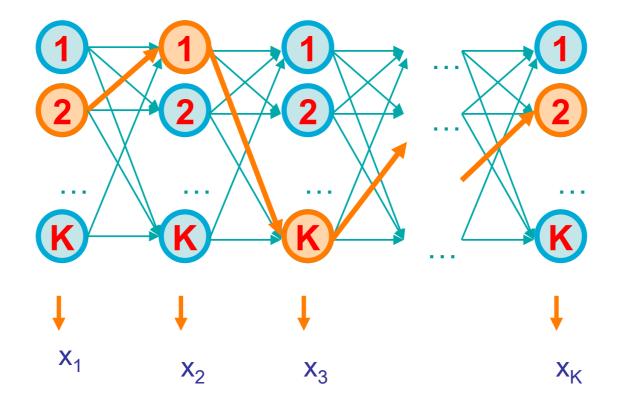
На практике:

Для избежания потерь значимости при перемножении маленьких чисел выполняется в логорифмическом пространстве

Вычислительная сложность:

Время: $O(K^2N)$ Пространство: O(KN)

Алгоритм просмотра вперед



<u>Задача</u>:

Дана последовательность наблюдений х. Определить вероятность, того что данная последовательность сгенерирована заданной НММ.

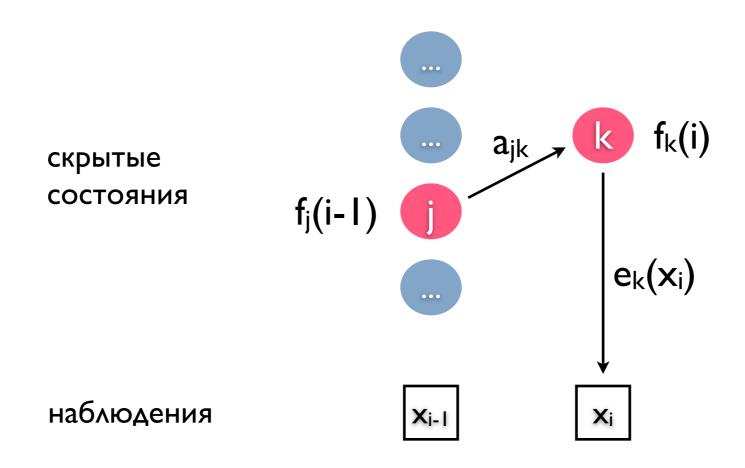
Приблеженное решение:

Вычислить вероятность последовательности наблюдений P(x) для наиболее вероятного пути π^* .

Точное решение:

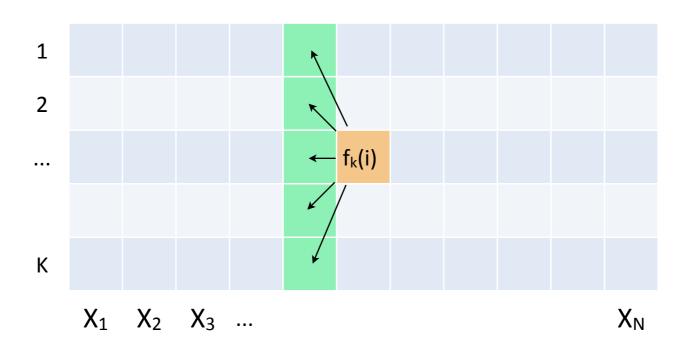
$$P(x) = \sum P(x,\pi)$$

Алгоритм просмотра вперед



$$f_k(i) = e_k(x_i) \times sum_j (f_j(i-1) \times a_{jk})$$

Алгоритм просмотра вперед



Входные аргументы: $x = x_1...x_N$

Инициализация:

$$f_0(0) = I$$
, $f_k(0) = 0$, для всех $k>0$

<u>Рекурсия</u>:

$$f_k(i) = e_k(x_i) \times sum_j (a_{jk} \cdot f_k(i-1))$$

Завершение:

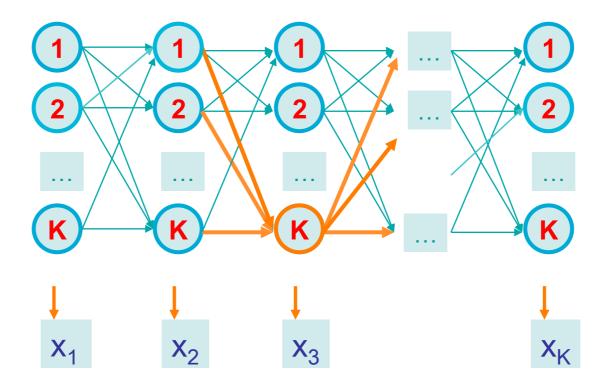
$$P(x,\pi^*) = sum_j f_j(N)$$

Вычислительная сложность:

Время: $O(K^2N)$

Пространство: O(KN)

Вероятность выбранного состояния



- Каково наиболее вероятное состояния в момент времени і для заданной последовательности х?
- Еще один способ определения оптимального пути:

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Алгоритм просмотра назад

Наша цель определить $P(\pi_i = k \mid x)$ - вероятность состояния k при i-м наблюдении и заданной последовательности x.

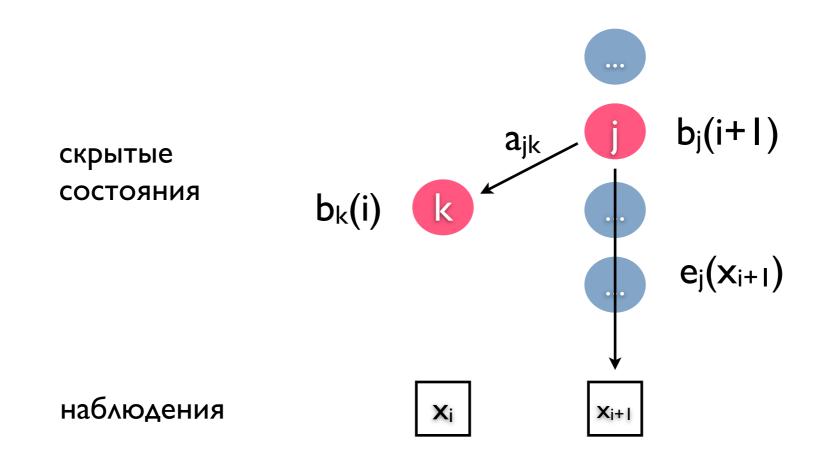
$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

$$P(\pi_i = k, x) = P(x_1 ... x_i, \pi_i = k, x_{i+1} ... x_N) =$$
 $= P(x_1 ... x_i, \pi_i = k) P(x_{i+1} ... x_N \mid x_1 ... x_i, \pi_i = k) =$
 $= P(x_1 ... x_i, \pi_i = k) P(x_{i+1} ... x_N \mid \pi_i = k)$

просмотр вперед просмотр назад $f_k(i)$ $b_k(i)$

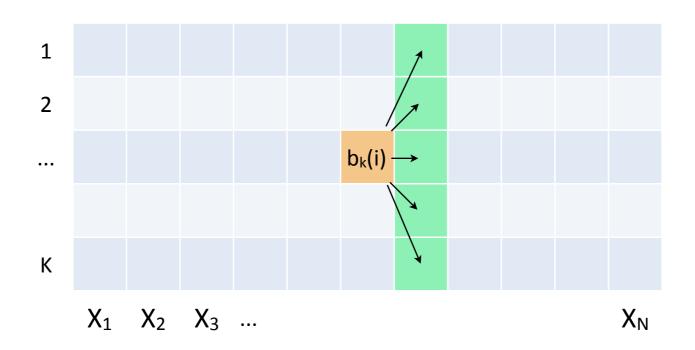
$$P(\pi_i = k \mid x) = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

Алгоритм просмотра назад



$$b_k(i) = sum_j (e_j(x_{i+1}) \times b_j(i+1) \times a_{jk})$$

Алгоритм просмотра назад



Входные аргументы: $x = x_1...x_N$

Инициализация:

$$b_K(N) = a_{k0}$$
, для всех k

<u>Рекурсия</u>:

$$b_k(i) = sum_j (e_j(x_{i+1}) \cdot a_{jk} \cdot b_j(i+1))$$

Завершение:

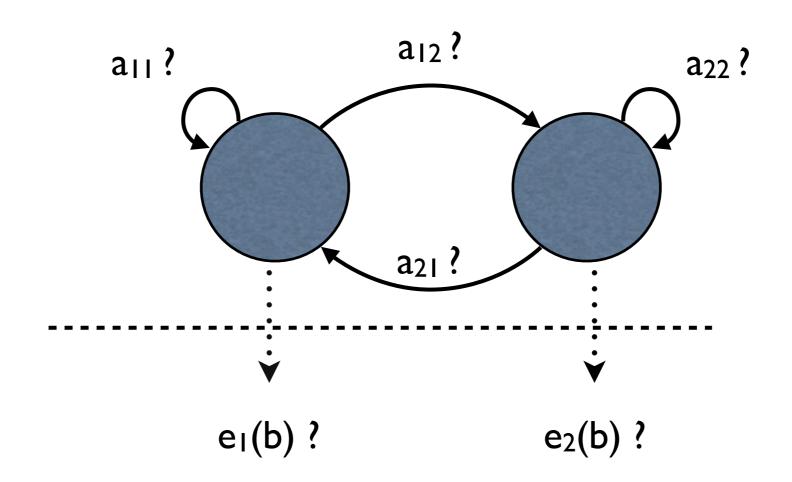
$$P(x) = sum_j (e_j(x_1) \cdot a_{0j} \cdot b_j(1))$$

Вычислительная сложность:

Время: $O(K^2N)$

Пространство: O(KN)

Оценка параметров НММ

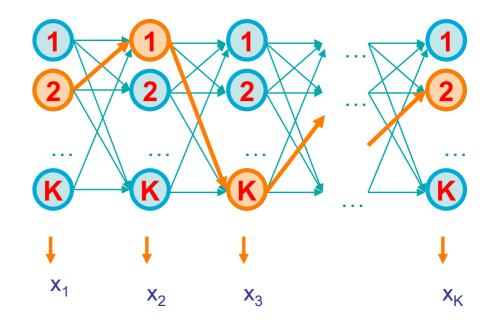


- Рассмотрим два случая имеющихся данных:
 - I. Имеются множества наблюдений и известна последовательность смены состояний
 - 2. Имеются множества наблюдений. Последовательность смены состояний неизвестна.

Случай І: путь известен

<u>Известны</u>:

- последовательность + a 6людений $x = x_1 ... x_N$
- последовательность состояний (путь) $\pi = \pi_1...\pi_N$



Определим:

- A_{kl} количество переходов из состояния k в состояние l вдоль пути π
- E_k(b) количество наблюдаемых символов b, сгенерированных в состоянии k

Оценки параметров модели:

Оценки параметров модели θ , вычисленные методом максимального правдаподобия

$$a_{kl} = \frac{A_{kl}}{\sum_{i} A_{kl}} \qquad e_k(b) = \frac{E_k(b)}{\sum_{c} E_k(c)}$$

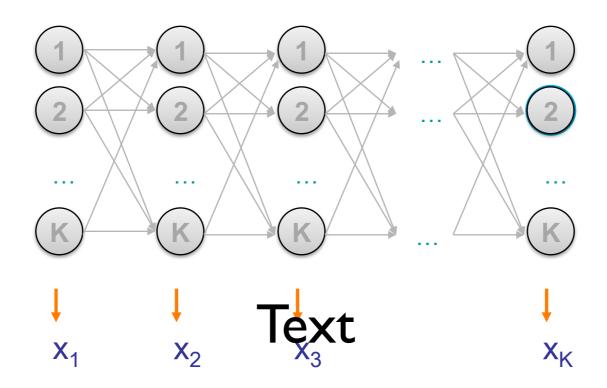
Псевдокаунты

При малом объеме обучающей выборке возникает проблема переобучения - оценки a_{kl} и $e_k(b)$ в некоторых случаях могут быть равны нулю

Определим:

- A_{kl} количество переходов из k в l + r_{kl}
- $E_k(b)$ количество генераций b в состоянии $k + r_k(b)$

Случай 2: путь неизвестен



Два метода:

- экономный обучение Витерби (используется оптимальный путь)
- правильный метод Баума-Уэлча, максимизация ожидания

Обучение Витерби

Инициализация:

Выбираем параметры модели случайным образом или на основе априорных знаний

Итерации (выполняем до сходимости):

- I. Находим оптимальный путь π^* алгоритмом Витерби
- 2. Вычисляем A_{kl} и $E_k(b)$ вдоль пути π^* , добавляем псевдоотчеты
- 3. Вычисляем новые параметры модели а_{kl} и е_k(b)

Примечания:

- процедура не максимизирует $P(x^1,x^2,...,x^N|\theta)$, а максимизирует $P(x^1,x^2,...,x^N|\theta)$, $\pi^*(x^1)$, $\pi^*(x^2)$,..., $\pi^*(x^2N)$)
- в целом метод работает хуже, чем максимизация ожидания (метод Баума-Уэлча)

Максимизация ожидания (Expectation Maximization)

- Случайный выбор параметров модели
- Применение модели для оценки отсутствующих данных (Е-шаг)
- Использование полученных данных для обновления параметров модели (М-шаг)

Метод Баума-Уэлча

Считая известными параметры модели (на первом шаге выбираются случайно, на последующих - оцениваются), вычислим вероятность $P_{kl}(x|\theta)$ перехода их k-го состояния шага і в l-е состояние шага і+ l

$$\begin{split} P(\pi_{i} = k, & \pi_{i+1} = l \mid x, \theta) = \frac{P(\pi_{i} = k, \pi_{i+1} = l, x_{1} ... x_{N})}{P(x \mid \theta)} \\ P(\pi_{i} = k, & \pi_{i+1} = l, x_{1} ... x_{N}) = P(x_{1}, ..., x_{i}, \pi_{i} = k, \pi_{i+1} = l, x_{i+1}, ..., x_{N}) = \\ = P(\pi_{i+1} = l, x_{i+1} ... x_{N} \mid \pi_{i} = k) P(x_{1} ... x_{i}, \pi_{i} = k) = \\ = P(\pi_{i+1} = l, x_{i+1} ... x_{N} \mid \pi_{i} = k) f_{k}(i) = \\ = P(x_{i+2} ... x_{N} \mid \pi_{i+1} = l) P(x_{i+1} \mid \pi_{i+1} = l) P(\pi_{i+1} = l \mid \pi_{i} = k) f_{k}(i) = \\ = b_{i}(i+1) e_{i}(x_{i+1}) a_{kl} f_{k}(i) \\ P(\pi_{i} = k, \pi_{i+1} = l \mid x, \theta) = \frac{f_{k}(i) a_{kl} e_{i}(x_{i+1}) b_{i}(i+1)}{P(x \mid \theta)} \end{split}$$

Метод Баума-Уэлча: оценка параметров модели

Суммируем вероятности переходов из состояния k в состояние l по всем моментам времени i и по всем обучающим последовательностям x

$$A_{kl} = \sum_{x} \sum_{i} P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_{x} \sum_{i} \frac{f_k(i) a_{kl} e_i(x_{i+1}) b_i(i+1)}{P(x \mid \theta)}$$

Аналогично,

$$E_k(b) = \sum_{x \in \{i \mid x_i = b\}} \frac{f_k(i)b_k(i)}{P(x \mid \theta)}$$

Алгоритм Баума-Уэлча

Инициализация:

Выбираем параметры модели случайным образом или на основе априорных знаний

Для каждой последовательности:

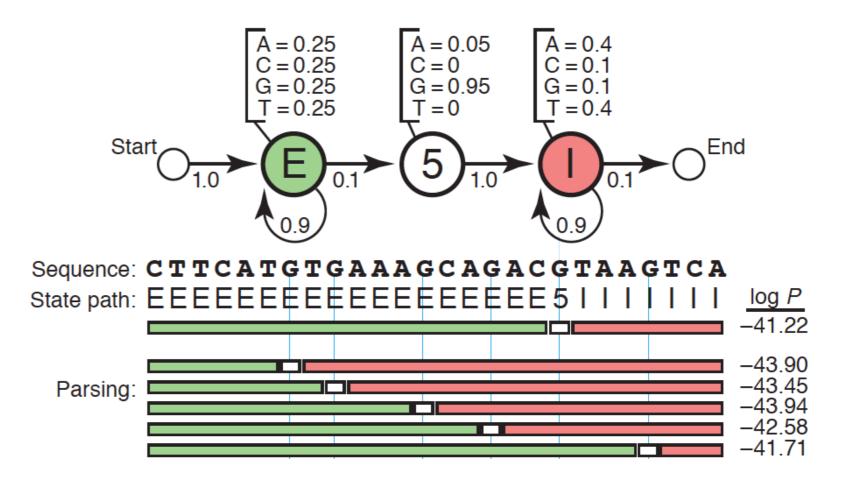
- I. Вычисляем $f_k(i)$ алгоритмом просмотра вперед
- 2. Вычисляем b_k(i) алгоритмом просмотра назад
- 3. Добавляем вклад последовательности в A_{kl} и E_k(b)

Вычисляем новые параметры модели a_{kl} и $e_k(b)$ и повторяем итерации Вычислим значение правдоподобия модели

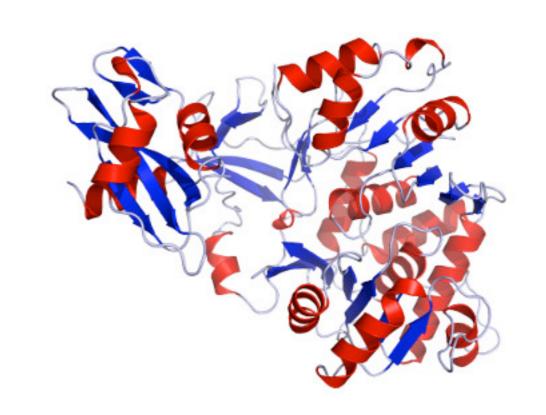
Останавливаемся, когда улучшение правдоподобия достигает максимума или ее изменение меньше порога

Применение НММ в биоинформатике

Пример: распознавание 5' сайта сплайсинга.



- распознавание генов
- предсказание типов вторичной структуры белков
- распознавание CpG островков
- участки белков сигнальные пептиды, эпитопы и т.д.



Благодарности

• При подготовке слайдов использовались материалы лекций:

- Михаила Гельфанда (ИППИ)
- Андрея Миронова (МГУ)
- Serafim Batzoglou (Stanford)
- Manolis Kellis (MIT)
- Pavel Pevzner (UCSD)